
Constraint solving on modular integers

Arnaud Gotlieb1, Michel Leconte2, and Bruno Marre3

1 INRIA Rennes Bretagne Atlantique, Campus Beaulieu, 35042 Rennes, France
arnaud.gotlieb@inria.fr

2 ILOG Lab, IBM France, Gentilly, France
leconte@ibm.fr

3 CEA, LIST, Gif-sur-Yvette, F-91191, France
marre@cea.fr

Abstract. Constraint solving over finite-sized integers involves the def-
inition of propagators able to capture modular (a.k.a. wrap-around) in-
teger computations. In this paper, we propose efficient propagators for
a fragment of modular integer constraints including adders, multipliers
and comparators. Our approach is based on the original notion of Clock-
wise Interval for which we define a complete arithmetic. We also present
three distinct implementations of modular integer constraint solving in
the context of software verification4.

1 Introduction

Using constraint solving to automatically generate program inputs is an emerg-
ing trend in software verification. In the last decade, several tools based on Finite
Domains (FD) constraint solving were proposed that perform test inputs gener-
ation for C programs (e.g., InKa [7], PathCrawler [9]), test case generation for
reactive programs (e.g., GATEL [10]), or property-oriented software verification
(e.g., CPBPV [4], Euclide [6]). In these tools, automated verification of inten-

unsigned long len = 2147483648; % Equal to 231

void f(unsigned long buf) {
1. if (buf + len < buf) {
2. . . .

Fig. 1. Program taking care of integer overflow

sive integer computations involves solving constraints over finite-sized integers.
As an example, consider the problem of reaching5 statement 2 in the program
of Fig.1 that requires solving the decision buf+len < buf over unsigned 32-
bits integers. A naive translation of the decision of statement 1 as constraint

4 This work is supported by ANR-07-SESUR-003 CAVERN Project
5 Reachability is a fundamental problem in software program verification.

buf + len < buf where buf belongs to 0..232 − 1 and len = 231, yields an in-
correct result saying that statement 2 is unreacheable. In fact, it is trivial to see
that this constraint is unsatisfiable when it is interpreted over Finite Domains
(FD). However, statement 2 can be reached by selecting a test value such as
buf = 231, as 231 + 231 = 232 corresponds to value 0 in unsigned 32-bits integer
arithmetic. Note also that simplifying buf + len < buf in len < 0 is forbidden
in this arithmetic. The overall reason is that decision 2 should be rather inter-
preted as buf + len < buf mod(232). In fact, this problem is sometimes reported
to as the “wrapping effect” and it turned out that programmers who take care of
possible integer overflows routinely write programs that use this effect. In Fig.1,
statement 2 can only be reached by a wrapping behaviour. Unfortunately, all the
previously mentionned tools that exploits constraint techniques for automated
test data generation or property-oriented verification simply ignore this wrap-
ping effect. In fact, as soon as finite domains are specified for each input and
intermediate variable, these tools consider that programs with integer overflows
are necessarily incorrect and should be rejected. This is obviously abusive and
often conducts to report false negatives.

This paper adresses this problem by providing efficient constraint solving
over modular integer computations. We propose bound-consistency propagators
for a linear fragment of these constraints that includes adders, multipliers and
comparators. Our approach is based on the original notion of Clockwise Interval
that captures the wrapping effect by considering intervals with modular inte-
ger bounds. An example of such Clockwise Interval is the interval [7, 2]8 that
represents all the integers x such that x mod 8 = 7, x mod 8 = 0, x mod 8 =
1, x mod 8 = 2. For these Clockwise Intervals, we give a complete arithmetic
that has not been published elsewhere.

In the context of the ANR CAVERN project6 we independently built three
distinct implementations of modular integer constraint solving that are varia-
tions of clockwise interval arithmetics. These implementations of modular integer
constraint solving are used in three software verification tools. Our first imple-
mentation called MAXC is used in the context of automatic test input generation
for C programs. It implements bound-consistency filtering for a linear fragment
of modular integer constraints. For example, for constraint buf⊕231 < buf where
⊕ denotes modular addition over 32-bit integers, MAXC automatically prunes
the domain of buf to the Clockwise Interval [231, 232−1]232 , removing half of the
variation domain of buf . Our second implementation called JSOLVER [8] is in-
tented to perform automatic analysis of rule-based programs. JSOLVER is based
on classic intervals but it takes into account modular integer computations. A
comparison with the Clockwise Interval arithmetics shows that JSOLVER is effi-
cient but not optimal when computing local-consistencies over these constraints.
Finally, the third implementation is called COLIBRI and it enables automatic
test data generation for reactive programs [10]. COLIBRI implements modular
integer constraints on domains represented as union of classic intervals.

6 cavern.inria.fr

The rest of the paper is organized as follows: Sec.2 introduces the notations
and the formal definitions used in the rest of the paper. Sec.3 presents bound-
consistency filtering on modular integer constraints. Sec.4 describes our three
distinct implementations and discusses their relations with Clockwise Intervals.
Finally, Sec.5 concludes and draws several perspectives to this work.

2 Preliminaries

2.1 Notations

Let Z denote the set of integers and Zb denote the finite set of integers modulo
b. For any x ∈ Z and y ∈ Z∗, x mod y denotes the integer r such that ∃q ∈ Z
r = x−y∗q and 0 ≤ r < y, while x quo y denotes q the quotient. In the following,
we will fix b = 2n where n is any non-negative integer. Since Zb consists of residue
classes, several representations are possible. In this paper, we will consider two
representations that can be used to emulate integral computations in imperative
languages such C or Java: the unsigned representation {0, 1, . . . , b− 1} and the
signed representation {− b

2 , . . . ,−1, 0, 1, . . . , b
2 −1}. For the sake of simplicity, we

will use the unsigned representation (unless it is mentionned otherwise).
In the context of integer-based manipulations, a classic interval noted x..y

where x, y ∈ Z and x ≤ y denotes the finite ordered set {x, x + 1, . . . , y − 1, y}.

Definition 1 (Width). The width of an interval x..y is an integer, defined as
follows: wid(x..y) , y − x.

2.2 Clockwise Interval

Definition 2 (Clockwise Interval). Let x and y be two integers modulo b, a
Clockwise Interval (CI) is noted [x, y]b and denotes the set {x, x+1 mod b, . . . , y−
1 mod b, y}.

It differs from classic interval in that any of its element is a residue class of
integer modulo b. Furthermore, the bound y is not required to be greater than x
as the set {x, x + 1modb, . . . , y− 1modb, y} is unordered. By convention, we con-
sider that [0, b− 1]b is the canonical representation of Zb itself. Note that other
representations exist: [1, 0]b, [2, 1]b,...,[b− 1, 0]b. Clockwise Intervals that have a
positive or null width are called proper CIs, while others are called improper CIs.
The width of a CI is defined by extending the definition of width over classic in-
tervals, by using the canonical representation: wid([x, y]b) = wid(x..y). Note that
width can then becomes negative in this case. The set of clockwise intervals over
Zb is finite. It is composed of {[]b, [0, 0]b, . . . , [b− 1, b− 1]b, [0, 1]b, [1, 0]b, . . . , [b−
2, b − 1]b, [b − 1, b − 2]b, . . . , [0, b − 1]b}, where []b denotes the empty clockwise
interval.

Definition 3 (Cardinality). Let [x, y]b be a CI, then its cardinality is an in-
teger modulo b defined as: card([x, y]b) , (y − x + 1) mod b.

By convention, card([0, b − 1]b) = b and 0 < card([x, y]b) ≤ b. For example,
card([7, 0]8) = 2 while wid([7, 0]8) = −7. The following property immediatly
holds:

Proposition 1. A CI [x, y]b contains exactly card([x, y]b) elements, if repre-
sented over [1, b]b.

Proof. If y ≥ x, then the set [x, y]b = {x, x + 1, . . . , y − 1, y} is ordered and
contains y − x + 1 elements. The special case where y − x + 1 = b corresponds
to the CI [0, b− 1]b and then card([0, b− 1]b) = b.
If y < x, then [x, y]b = {x, x + 1, . . . , b − 1} ∪ {0, 1, . . . , y} and so, it contains
(b − x) + (y + 1) elements. In this case, b − x + y + 1 ≡ y − x + 1 mod b that
gives the expected result.

2.3 Building clockwise intervals

A classic interval can be converted into a CI by using the following formula:

x..y mod b ,

{
[0, b− 1]b if wid(x..y) ≥ b

[x mod b, y mod b]b otherwise

We define the hull of a set of modular integers as being the smallest Clockwise
Interval w.r.t. cardinality, that contains all the elements of the set. By conven-
tion, proper clockwise intervals are considered smaller than improper ones when
they have same cardinality. Formally,

Definition 4 (Hull). Let S = {x1, . . . , xp} be a subset of Zb, the hull of S is a
CI noted �S, defined as:

�S , Infcard({[xi, xj]b|{x1, . . . , xp} ⊆ [xi, xj]b)

Building an algorithm from this definition yields an untractable procedure as it
would require considering p! possible combinations of the bounds. Fortunately,
we have the following proposition:

Proposition 2. Let S = {x0, . . . , xp−1} be an ordered subset of Zb, and let
x−1 denotes xp−1, then

�S = [xi, xi−1]b where i ∈ 0..p− 1 such that card([xi, xi−1]b) is minimized

Therefore, when S is ordered, �S can be computed in linear time w.r.t. size of
S.

Proof. The case where [xi, xi−1]b is proper, i.e., xi = x0 and xi−1 = xp, is
trivial. Let suppose that [xi, xi−1]b is an improper CI. Firstly, it is clear that
S ⊆ [xi, xi−1]b as S is ordered (∀i ∈ 1..p− 2, x0 ≤ xi−1 ≤ xi ≤ xp−1). Secondly,
as card([xi, xi−1]b) is minimized, it remains to show that there does not exist a
CI [k, l]b where j 6= i− 1 that contains S and that is tighter than [xi, xi−1]b). If
l > xi−1 then xi−1 6∈ [k, l]b and if k < xi then xi 6∈ [k, l]b, meanning that l ≤ xi−1

and k ≥ xi. By this, we get card([k, l]b) ≥ card([xi, xi−1]b) which contradicts
the hypothesis.

2.4 Clockwise Interval Arithmetic

Having defined Cl, we now turn on the definition of Clockwise Interval Arithmetic
that allows us to perform computations over intervals.

Definition 5 (Addition). Let [i, j]b and [k, l]b be two CI, then the addition
operation, noted ⊕, is defined as:

[i, j]b⊕[k, l]b ,

[0, b− 1]b if card([i, j]b) = b or card([k, l]b) = b

or card([i, j]b) + card([k, l]b ≥ b

[(i + k) mod b, (j + l) mod b]b otherwise

Correction property: ∀x ∈ [i, j]b,∀y ∈ [k, l]b, (x + y) mod b ∈ [i, j]b ⊕ [k, l]b.

For example, [2, 3]8 ⊕ [3, 2]8 = [0, 7]8 while [2, 2]8 ⊕ [3, 3]8 = [5, 5]8.

Definition 6 (Substraction). Let [i, j]b and [k, l]b be two CI, then the sub-
straction operation, noted 	, is defined as:

[i, j]b	[k, l]b ,

[0, b− 1]b if card([i, j]b) = b or card([k, l]b) = b

or card([i, j]b) + card([k, l]b ≥ b

[(i− l) mod b, (j − k) mod b]b otherwise

Correction property: ∀x ∈ [i, j]b,∀y ∈ [k, l]b, (x− y) mod b ∈ [i, j]b 	 [k, l]b.

For example, we have [0, 1]8	[0, 1]8 = [7, 1]8. Note that [0, b−1]b is absorbing for
⊕ and 	. For those two operations, similarily to the situation in classic Interval
Arithmetic, the computations can be performed on the bounds of Clockwise
Intervals. This is no longer the case for multiplication and division, as the tightest
CI that encloses all the solutions cannot be computed by using only bounds of its
operands in those cases. Let us first define precisely the considered operations:

Definition 7 (Multiplication by a constant k). Let k be a constant modulo
b and [i, j]b a CI, then the multiplication by k is defined as follows:

k ∗ [i, j]b , �({k ∗ i mod b, k ∗ (i + 1) mod b, ..., k ∗ j mod b})

Definition 8 (Multiplication). Let [i, j]b and [k, l]b be two CI, then the mul-
tiplication operation, noted ⊗, is defined as:

[i, j]b⊗[k, l]b , �({i∗k mod b, i∗(k+1) mod b, ..., (i+1)∗k mod b, ..., j∗l mod b})

Definition 9 (Division). Let [i, j]b and [k, l]b be two CI, then the division
operation, noted �, is defined as:

[i, j]b�[k, l]b , �({i/k mod b, i/(k+1) mod b, ..., (i+1)/k mod b, ..., j/l mod b})

As an example, consider the multiplication by a constant operation 4 ⊗ [2, 4]8.
With the formula, we get �({4∗2 mod 8, 4∗3 mod 8, 4∗4 mod 8}) = �({0, 4}) =
[0, 4]8. Unfortunately, the bounds of the resulting CI [0, 4]8 cannot be computed
by using only the bounds of CI operands as 4 ∗ 2 ≡ 4 ∗ 4 ≡ 0 mod 8. Computing
the resulting CI by enumerating all the elements of its operands seems unrea-
sonnable in the context of large-sized machine integers. The following subsection
describes a method that permits to compute the resulting optimal CI in the case
of multiplication by a constant k, without requiring a ful enumeration of the
domain of possible values.

2.5 An efficient method for computing optimal CI in the presence
of multiplication operators

The method is based on the following notes:

– the structure of Z2n is well known: the divisors of 0 are powers of 2 ;
– thanks to proposition 2, �({x1, ..., xp}) can be computed efficiently when

the set {x1, ..., xp} is ordered.

Let k be a constant modulo b = 2n, let [i, j]b be a CI, we describe a method
that allows to compute the minimum and the maximum values of k ∗ [i, j]b =
�({k ∗ i mod b, k ∗ (i + 1) mod b, ..., k ∗ j mod b}).

We start by eliminating some trivial cases: If k = 0, then k∗[i, j]b = �({0}) =
[0, 0]b. If k = 1, then k ∗ [i, j]b = [i, j]b. If i ≤ j and k ∗ j < b, then k ∗ [i, j]b =
[k ∗ i, k ∗ j]b. Let now suppose that k is a constant greater or equal to 2 and
k ∗ j ≥ b or i > j. We have the following proposition:

Proposition 3. Let k 6= 2w, q1 = k ∗ i quo b and q2 = k ∗ j quo b, then:
Max(k ∗ [i, j]b) = b− d where d = Minq1<q≤q2(q ∗ b mod k) and
Min(k ∗ [i, j]b) = d′ where d′ = Minq1<q≤q2(−q ∗ b mod k).

Proof. (sketch of, partial) Let p be the element of [i, j]b for which k ∗ p mod b is
maximized in Zb, and let q be the smallest value such that k ∗ p < q ∗ b, then we
consider d = q ∗ b−k ∗p. We claim that d = q ∗ b mod k as 0 < p < k. It remains
to find the value of q that minimizes q ∗ b mod k. As p ∈ [i, j]b, we know that
q1 < q ≤ q2 by definition of q. Therefore we can explore the possible values of q
from q1 + 1 to q2, up to k − 1 values.

For example, consider k ∗ [i, j]b where k = 5 and [i, j]b = [2, 7]8. Applying
Prop.3, we get q1 = 5 ∗ 2 div 8 = 1 and q2 = 5 ∗ 7 div 8 = 4. For q = 2, 3, 4,
computing rq = q ∗ b mod k and r−q = −q ∗ b mod k leads to:
r2 = 16 mod 5 = 1 and r−2 = −16 mod 5 = 4,
r3 = 24 mod 5 = 4 and r−3 = −24 mod 5 = 1,
r4 = 32 mod 5 = 2 and r−4 = −32 mod 5 = 3.
The minimum over the ri is obtained when q = 2 and then Max(5 ∗ [2, 7]8) =
8− r2 = 1. For the r−i, it is obtained when q = 3 leading to Min(5 ∗ [2, 7]8) =
r−3 = 1. Hence, 5 ∗ [2, 7]8 = [1, 7]8 has been computed by exploring only the

divisors of b in k ∗ i..k ∗ j, instead of looking at all the double products k ∗ l
within the same range.

Finding similar propositions for generalized multiplication and division may
be possible, but one can also use Prop.3 to compute over-approximations of
the resulting CIs. It suffices to use the bounds of each operand interval as a
constant, to apply Prop.3 on each of the four double products, and keep the
smallest intersection of results. But note that, optimality is usually lost with
this approach.

3 Constraint propagation over Clockwise Intervals

In this section, we define projection functions that allow to perform constraint
propagation over CI. As usual in Finite Domains constraint solving, each variable
X is associated a finite domain dom(X) of possible values. We consider here that
domain are (over-)approximated by CI: CI(X) , �(dom(X)).

3.1 Set-based operations over CI

Inclusion, union and intersection of Clockwise Intervals are defined by using their
set-theoretic definition counterpart. For example, inclusion over CI is defined as
follows:

[i, j]b ⊆ [k, l]b ⇐⇒ {i, i + 1, . . . , j} ⊆ {k, k + 1, . . . , l}

Note however that union and more surprisingly intersection are not closed over
CI. For example, [5, 2]8∩[1, 6]8 = {1, 2, 5, 6}. Hence, we define the meet operation
as taking the smallest CI that contains all the elements of the intersection:

[i, j]b
∧

[k, l]b , �({i, i + 1, . . . , j} ∩ {k, k + 1, . . . , l})

For example, we got: [5, 2]8
∧

[1, 6]8 = [1, 6]8 and [5, 1]8
∧

[0, 6]8 = [5, 1]8. The
main question is whether these operations can be computed efficiently. The fol-
lowing property helps answering this question:
Let x be an integer modulo b, then x ∈ [i, j]b is true iff x ≥ i ∧ x ≤ j when
[i, j]b is proper and x ≥ i ∨ x ≤ j when [i, j]b is improper. This property comes
directly from definition of CI.

The meet operator
∧

As the computations of meet is at the core of con-
straint propagation engine, finding an efficent algorithm is of great importance.
The definition given above requires to explore each element of both domains
at least once. This can be costly when large domains are involved during con-
straint propagation. The following proposition offers ways to compute the meet
operation more efficently:

Proposition 4. Let X = [i, j]b and Y = [k, l]b be two CI, then X
∧

Y is defined
as:

if wid(X) ∗ wid(Y) = 0 (suppose for example that X = [i, i]b)

X
∧

Y =

[i, i] if X = [i, i]b ∧ i ∈ Y

[k, k] if Y = [k, k]b ∧ k ∈ X

[]b otherwise

if wid(X) ∗ wid(Y) > 0 then

X
∧

Y =

{
[]b if wid(X) > 0 ∧ wid(Y) > 0 ∧max{i, k} > min{j, l}
[max{i, k}, min{j, l}]b otherwise

if wid(X) ∗ wid(Y) < 0 then

X
∧

Y =

[]b if j < k ∧ l < i

[k, j]b if j ≥ k ∧ l < i

[i, l]b if j < k ∧ l ≥ i

Y if j ≥ k ∧ l ≥ i

∧ card(Y) ≤ card(X)
X if j ≥ k, l ≥ i

∧ card(X) < card(Y)

In these cases, proving that CI(X)
∧

CI(Y) = �({i, i + 1, . . . , j} ∩ {k, k +
1, . . . , l}) is not difficult.

Note that the situation differs from classic Interval Arithmetic where the inter-
section of two intervals is always an interval enclosed within its two operands.
Here, [i, j]b

∧
[k, l]b is sometimes not included in both [i, j]b or [k, l]b. This could

be problematic w.r.t. the monotony of projection functions. Fortunately, the
meet operation requires to minimize the cardinality of the resulting clockwise
interval. Hence, each time a projection function is called on variable X, the car-
dinality of CI(X) decrases. This ensures the computations progress towards a
fixpoint.

∨
: the join operator The join operation is defined accordingly:

[i, j]b
∨

[k, l]b , �({i, i + 1, . . . , j} ∪ {k, k + 1, . . . , l})

Proposition 5. Let CI(X) = [i, j]b and CI(Y) = [k, l]b, then CI(X)
∨

CI(Y)
can be defined as follows:
if wid(CI(X)) ≥ 0 ∧ wid(CI(Y)) ≥ 0 then

CI(X)
∨

CI(Y) =

{
[i, l]b if card([i, l]b) ≤ card([k, j]b)
[k, j]b otherwise

Note that these two operations (
∧

,
∨

) give the CI set a structure of a finite
lattice.

3.2 Relations over CI

Let X, Y be two variables over Zb, the relation X = Y leads to prune CI(X)
and CI(Y) with the following rule: CI(X), CI(Y) ← CI(X)

∧
CI(Y). In CI

Arithmetic, the relation X ≤ Y leads to prune CI(X) = [i, j]b and CI(Y) =
[k, l]b with the rule CI(X) ← CI(X)

∧
[0, max(CI(Y))]. Other relations can

easily be derived from these ones.

3.3 Bound-consistency for modular integer constraints

From the formula given above, one can derive practical algorithms to perform
bound-consistency on modular integer constraints. The simplest approach is to
implement propagators on Clockwise Intervals within an AC-3 propagation algo-
rithm. Once a CI becomes empty, then the constraint system is shown as being
unsatisfiable. If none CI become void, then the resulting CIs encompass all the
solutions of modular integer constraints.

For the linear fragment of modular integer constraints (i.e., addition, sub-
straction, multiplication by a constant) this approach maintains optimal CIs at
the cost of bounds computations. However, as soon as variable multiplication
is encountered, optimality requires time-quadratic exploration of CIs. This is
prohibitive in the context of 32-bits or 64-bits integer arithmetic. This problem
is similar to the situation in bit-vector arithmetic [2] where variable multipli-
cation requires time-quadratic computations on the number of bits. For these
non-linear constraints, as said previously, one can gave up optimality by com-
puting Clockwise Intervals that over-approximate optimal clockwise intervals.
In the implementations described below, several propositions are made in this
direction.

4 Implementations

In the context of the ANR CAVERN project, three distinct implementations of
modular integer constraint solving were done. During this work, it appears that
Clockwise Interval may be a unifying notion capturing the essence of modular
integer interval computations.

4.1 MAXC

At INRIA Rennes, the Clockwise Interval Arithmetic shown above was directly
implemented in MAXC, a solver dedicated to modular constraint solving. In a
near future, this solver should be integrated within EUCLIDE [6], an automatic
test data generator for critical C programs. The constraint system that is derived
from EUCLIDE includes modular constraints based on arithmetic operators (+,-
,*,div,mod) and high-level operators such as reification and global constraints
dedicated to program verification. We do not detail these operators here as our
paper is focussed on modular constraint solving. Propagators in MAXC are

implemented in C for efficiency reasons while the general propagation queue
is implemented in Prolog. Each variable is associated to a CI and contracting
propagators aim at pruning CIs of their inconsistent values. The size of variables
that can be represented in MAXC ranges from 1 bit to 64 bits as these are the
sizes typically found in primitive types in C. The data structure for encoding
CIs maintains cardinality and width:

typedef struct {

USH empty ; /* is an empty domain ? */

USH sign ; /* is a signed domain ? */

USH size ; /* allowed size = 1,2,3,4,8,16,32 or 64 bits */

UL min ; /* min_value of domain */

UL max ; /* max_value of domain */

UL wid ; /* absolute value of width of domain */

SSH sign_wid ; /* sign of width: SINGLE is 0 (eg [3,3]),

PROPER +1 (eg [3,6]),IMPROPER -1 (eg [6,3]) */

UL card ; /* cardinality of domain. O is the whole domain*/

ULL basis ; /* basis of modular calculus. 0 denotes 2^64 */

} TYPE_LFD ;

In this data structure, USH stands for unsigned short integer which corresponds
to 16-bits integers while UL stands for unsigned long, i.e. 32-bits integers. Other
keywords can easily be understood as variations of these two. Note that encoding
64-bits integer Clockwise Interval arithmetics is still possible but greater formats
cannot be encoded. The solver applies bound-consistency propagators on this
data structure for ⊕,	,⊗, It maintains optimal CIs for the linear fragment of
these constraints. The input format of constraints is an intermediate one, where
complex constraints have already been decomposed in simpler ones. Typical
requests are of the form:

test1 :- % In 3-bits integer arith.,

solveur:init_env(E), % X = 5, Y in 2..7, Z in 5..0, Z = X*Y

lfd:news([X,Y,Z],int(8),[’X’,’Y’,’Z’],E), % should produce

lfd:equal(const(’5’),X), % Y in 3..6, Z in 6..7

lfd:equal(in(’2’,’7’),Y),

lfd:equal(in(’5’,’0’),Z),

lfd:equal(’*’,X,Y,Z),

solveur:solve(E),

lfd:affiche([X,Y,Z]).

Many operators still have to be implemented in order to capture modular in-
teger constraints coming from C programs, including bit-to-bit operators (e.g.,
&, |, ~) , logical operators (e.g., &&, ||), nonlinear operators coming from de-
strucive assignment (i.e., i *= i++ that correspond to constraint i2 = (i1 +1)2),
and so on.

4.2 JSOLVER

JSolver is a IBM-ILOG Constraint-Based Programming library in (pure) Java.
It is derived from the C++ library IBM-ILOG Solver and has been tailored for

the static and dynamic analyses of rule-based programs [3, 8]. Currently, these
analyses are performed using an idealized integer arithmetic where modular com-
putations are ignored. Consequently overflows on integers are reported as errors
and the corresponding rule-based programs are rejected which is the expected
behaviour, as these programs are exploited by end-users and not by developers.

We recently investigated the use of CP to perform static analysis of rules
in order to optimize their compilation in a discrimination network [5]. Unlike
the above usage, this requires using the program execution semantics where
integer overflows are silently done (such as in Java). We report here on our first
implementation of bound consistency for integer modular constraints by using
classic intervals as defined in mathbooks: a classic interval a..b with integer
bounds a and b is the set of integers {x|a ≤ x ≤ b}. Let us consider two positive
32-bits integers and suppose we want to determine the range of the sum of these
(signed) integers ranging from 1 to 231 − 1. By using an idealized semantics
for integer computations, we get that the sum is ranging from 2 to 2(231 − 1).
Of course, this range could be exactly represented by using unbounded values
such as bigInteger in Java or approximated by 2.. + infinity. But, taking into
account modular integer arithmetic, we found that the sum is actually ranging on
−231..−2 union 2..231−1. The classic interval which covers all these values is the
set of all representable signed values on 32 bits MIN INT..MAX INT . Note
that such classic intervals usually over-approximate the results that could be
computed using Clockwise Intervals as, for example, the CI [2,−2]232 on signed
32-bits integers corresponds precisely to −231..− 2 union 2..231− 1 that is over-
approximated by the classic interval −231..231 − 1. To give a flavor of inferences
which could be made on classic interval for modular integer arithmetic, let us
continue our example by constraining the sum to be greater than −2. Let x,
y and z be three signed 32-bits integers such that z, the sum of x and y, is
greater than −2. x and y are ranging on 1..MAX INT and z is ranging on
−1..MAX INT . As the transformation x = z − y (resp. y = z − x) is correct
in modular integer arithmetic, we actually found that x (resp. y) is ranging on
1..MAX INT − 1. As z = x + y, we deduce that z is ranging on 2..MAX INT ,
then discovering that z is positive.

To formally define what our computations are, let us assume that we are
dealing with modular integer with a machine representation ranging from a
smaller integer denoted by m and a larger integer here denoted by M . let x..y be
a classic interval. u, v represent x and y in a (m, M) computer integer arithmetics
if m ≤ u ≤M , m ≤ v ≤M and x = u + ku(M −m + 1), y = kv(M −m + 1) for
two integers ku and kv. We may then introduce a castm,M function from classic
intervals to (m, M) intervals with the following definition:

castm,M (x..y) =

{
u..v if ku = kv

m..M if ku! = kv

This cast function provides concise definition for modular arithmetic. For exam-
ple the (best) forward operator for the sum z of x and y is z in castm,M (xmin +
ymin..xmax+ymax). As z = x+y is equivalent to x = y−z in modular arithmetic,

the (best) backward operator is defined by x in castm,M (zmin − ymax..zmax −
ymin) and y in castm,M (zmin − xmax..zmax − xmin).

The multiplication by a scalar is not so straightforward. On 32-bits signed
integer, the powers of 2 are divisors of 0 and the congruence domains [8] are not
preserved. For example, 2 ∗MIN INT = 0 and 3 ∗MIN INT which is equal
to MIN INT is not even divisible by 3. However, solving ax = b on 32-bits
signed integers is not so difficult. First we note that if a power of 2 divides a, it
should also divide b for the equation to have a solution. By simplifying by this
power of 2, say 2p, we obtain a′x = b′ mod 2(32−p). We find then the inverse u
of a′ mod 2(32−p). We infer that x = (ua′)x = u(a′x) = ub′ mod 2(32−p). Finally,
we obtained a range for x in 32-signed integers and a congruence domain to be
propagated. We can apply this method to the solving of ax in m..M on 32-bits
integers in a similar way. First, if 2p divides a, we keep only the multiples of 2p

from m..Max. Then we simplify m and M to solve ax in m′..M ′ mod 2(32−p) by
finding an inverse u of a′, leading to x in u∗m′..u∗M ′ mod 2(32−p). Here again, we
infer a range for x mod 232 and a linear congruence to be propagated. To end this
short report on our preliminary implementation, we should say that the general
multiplication of two variables is propagated by using the cast function. This
leads very often to the top approximation of the full integers, being not complete
but at least correct. For future implementations, we are thinking of making use
of the ku integer indicators in the cast function definition, as proposed in the
tool COLIBRI described below. We also think to switch our implementation
from classic intervals to clockwise intervals as the performance should be similar
whilst the precision is improved.

4.3 COLIBRI

COLIBRI is a constraint library developped at CEA LIST for its test genera-
tion tools: GATeL for the functional testing of LUSTRE/SCADE models [10],
PathCrawler for the structural testing of C code [11] and Osmose for the struc-
tural testing of binary code [1]. This library provides domains and constraints for
integer, real and floating point interval arithmetics. Furthermore, a congruence
domain is combined with the integer domain as described in [8].

The integer domain is implemented by union of intervals with finite bounds.
These bounds can be any integer since we use big integers provided by the Gnu
Multi-Precision library. This representation of integer domains allows to precisely
represent improper clockwize intervals. For example, using clockwise intervals we
have [2, 4]8 ⊕ [4, 7]8 = [6, 3]8. This interval corresponds to the following union of
classic intervals 0..3 ∪ 6..7 which is denoted by [0..3, 6..7] in COLIBRI.

In order to handle the signed and unsigned integer arithmetics used by com-
puter languages, COLIBRI provides signed and unsigned modular arithmetics
operations when the modulo is a positive power of two (i.e., when b = 2n with
n > 0). For each operation op in +,−,×, div, rem, power we provide the oper-
ations ops,n and opu,n which correspond to the modular signed and unsigned
versions of op. The implementation of these operations uses the following defi-
nition of modular operations.

∀(A, B,C) ∈ Z2n
3, A opsu,n B = C ≡ (∃K, AopB = C + K × 2n)

The range of K can be easily characterized for each opsu,n according to 2n.
For example, for the +u,n operation −1 ≤ K ≤ 1, while for the ×u,n operation
0 ≤ K ≤ 2n − 1.

Thus, according to the previous equivalence, the constraint propagators of
any modular operation can be implemented with those of non modular oper-
ations. This is exactly the way modular operations are implemented in COL-
IBRI. For example, the constraint A +u,n B = C where variables A, B and
C belong to [0, 2n − 1] is handled by the following conjunction of constraints:
A+B = X∧K×2n = Y ∧X +Y = C where the initial domain of K is [0, 2n−1],
Notice that the congruence domain knows that variable Y is a factor of 2n and
as soon as C (resp. Y) handles a congruence one can infer a congruence for Y
(resp. C).

For each modular operation, the variable K is a precise indication of un-
derfow/overflow: when K < 0 this means that there is an underflow, when
K > 0 this means that there is an overflow while when K = 0 there is no under-
fow/overflow. Such an indicator could be very helpfull for verification tools when
checking computation w.r.t. underfow/overflow. This is why COLIBRI modular
constraints handle a supplementary argument UO which abstracts the sign of
K: UO belongs to [−1, 1] and has the same sign as K. Any assignment of this
variable UO can be used to force underflow (UO = −1), overflow (UO = 1) of
normal computation (UO = 0). Moreover, one can force non normal behaviour
by stating that UO <> 0.

To conclude this short presentation of modular operations in COLIBRI, let
us remark that the accuracy of this implementation relies on the use of union of
intervals with big integer bounds. This could be considered very expensive for
constraints systems involving heavy computations. However, as shown by a re-
cent experiment [2] using SMT-LIB benchmarks our implementation of modular
arithmetics is competitive with powerfull SMT solvers.

5 Conclusions and perspectives

In this paper, we introduced Clockwise Intervals as a way to capture modular
interger interval computations. We described three distinct implementations of
modular integer constraint solving that have applications in program testing and
analysis. We have also seen that finding optimal bounds in bound-consistency
filtering of modular integer computations is not trivial and often requires ap-
proximations. For general multiplication and division, efficient ways to compute
optimal bounds still need to be found. On the foundations of the approach,
Clockwise Interval appears as a good tool to describe bound-consistency on
modular integer computations but its relations with other Interval Arithmetics
still need to be studied. On the applications of modular integer constraint solv-
ing, experimental evaluation is required in the diverse contexts presented earlier

in the paper, namely, automatic test inputs generation for C programs, test case
generation for reactive programs and rule-based program analysis. Another per-
spective of this work concerns the way other dedicated constraint solver could
be married with Clockwise Intervals. For example, the recent work of Bardin
et al. in [2] showed that dedicated bitvectors operators could be efficiently cou-
pled with classic intervals. It remains to find ways to integrate such arithmetics
within Clockwise Intervals.

Acknowledgments

We would like to thank the members of the ANR CAVERN project who par-
ticipated to our initial discussions on this topic, namely Bruno Berstel, Bernard
Botella, Claude Michel, Michel Rueher, and Nicky Williams.

References

1. S. Bardin and P. Herrmann. Structural testing of executables. In 1th Int. Conf.
on Soft. Testing, Verif. and Valid. (ICST’08), pages 22–31, 2008.

2. S. Bardin, P. Herrmann, and F. Perroud. An alternative to sat-based approaches
for bit-vectors. In Tools and Algorithms for the Construction and Analysis
(TACAS’10), pages 84–98, 2010.

3. B. Berstel and M. Leconte. Using constraints to verify properties of programs.
In 2nd Workshop on Constraints in Software Testing, Verification and Analysis,
CSTVA’10, 2010. Co-located with ICST’10 in Paris, April.

4. H. Collavizza, M. Rueher, and P. Van Hentenryck. Cpbpv: A constraint-
programming framework for bounded program verification. In Proc. of CP2008,
LNCS 5202, pages 327–341, 2008.

5. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligence, 19:17–37, 1982.

6. A. Gotlieb. Euclide: A constraint-based testing platform for critical c programs.
In 2th IEEE International Conference on Software Testing, Validation and Verifi-
cation (ICST’09), Denver, CO, Apr. 2009.

7. A. Gotlieb, B. Botella, and M. Rueher. A clp framework for computing structural
test data. In Proceedings of Computational Logic (CL’2000), LNAI 1891, pages
399–413, London, UK, July 2000.

8. M. Leconte and B. Berstel. Extending a cp solver with congruences as domains
for software verification. In 1st Workshop on Constraints in Software Testing,
Verification and Analysis, CSTVA’06, 2006. Co-located with CP’06 in Nantes,
September.

9. B. Marre, P. Mouy, and N. Williams. On-the-fly generation of k-path tests for
c functions. In Proceedings of the 19th IEEE Int. Conf. on Automated Software
Engineering (ASE’04), Linz, Austria, September 2004.

10. Bruno Marre and Benjamin Blanc. Test selection strategies for lustre descriptions
in gatel. Electronic Notes in Theoretical Computer Science, 111:93 – 111, 2005.

11. N. Williams, B. Marre, P. Mouy, and M. Roger. Pathcrawler: Automatic generation
of path tests by combining static and dynamic analysis. In Proc. Dependable
Computing - EDCC’05, 2005.

